Fuzzy-rough approaches for mammographic risk analysis
نویسندگان
چکیده
The accuracy of methods for the assessment of mammographic risk analysis is heavily related to breast tissue characteristics. Previous work has demonstrated considerable success in developing an automatic breast tissue classification methodology which overcomes this difficulty. This paper proposes a unified approach for the application of a number of rough and fuzzy-rough set methods to the analysis of mammographic data. Indeed this is the first time that fuzzy-rough approaches have been applied to this particular problem domain. In the unified approach detailed here feature selection methods are employed for dimensionality reduction developed using rough sets and fuzzy-rough sets. A number of classifiers are then used to examine the data reduced by the feature selection approaches and assess the positive impact of these methods on classification accuracy. Additionally, this paper also proposes a new fuzzy-rough classifier based on the nearest neighbour classification algorithm. The novel use
منابع مشابه
Evolutionary Fuzzy Extreme Learning Machine for Mammographic Risk Analysis
Mammographic risk analysis is an important and challenging issue in modern medical science; research and development in this area has recently attracted much attention. Many efforts have been devoted to achieving a higher accuracy in such analysis. This paper presents a novel approach for automated analysis of mammographic risk, in support of human consultant estimation of such risk. The underl...
متن کاملHybrid Mammogram Classification Using Rough Set and Fuzzy Classifier
We propose a computer aided detection (CAD) system for the detection and classification of suspicious regions in mammographic images. This system combines a dimensionality reduction module (using principal component analysis), a feature extraction module (using independent component analysis), and a feature subset selection module (using rough set model). Rough set model is used to reduce the e...
متن کاملA hybrid filter-based feature selection method via hesitant fuzzy and rough sets concepts
High dimensional microarray datasets are difficult to classify since they have many features with small number ofinstances and imbalanced distribution of classes. This paper proposes a filter-based feature selection method to improvethe classification performance of microarray datasets by selecting the significant features. Combining the concepts ofrough sets, weighted rough set, fuzzy rough se...
متن کاملMulti-granulation fuzzy probabilistic rough sets and their corresponding three-way decisions over two universes
This article introduces a general framework of multi-granulation fuzzy probabilistic roughsets (MG-FPRSs) models in multi-granulation fuzzy probabilistic approximation space over twouniverses. Four types of MG-FPRSs are established, by the four different conditional probabilitiesof fuzzy event. For different constraints on parameters, we obtain four kinds of each type MG-FPRSs...
متن کاملOn $L$-double fuzzy rough sets
ur aim of this paper is to introduce the concept of $L$-double fuzzy rough sets in whichboth constructive and axiomatic approaches are used. In constructive approach, a pairof $L$-double fuzzy lower (resp. upper) approximation operators is defined and the basic properties of them are studied.From the viewpoint of the axiomatic approach, a set of axioms is constructed to characterize the $L...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Intell. Data Anal.
دوره 14 شماره
صفحات -
تاریخ انتشار 2010